Skip to content
The Kids Research Institute Australia logo
Donate

No results yet

Search

Research

Oxidative stress and abnormal bioactive lipids in early cystic fibrosis lung disease

Several lipid biomarkers of early cystic fibrosis lung disease were identified, which point toward potential disease monitoring and therapeutic approaches

Research

BAL Inflammatory Markers Can Predict Pulmonary Exacerbations in Children With Cystic Fibrosis

Pulmonary exacerbations in cystic fibrosis are characterized by airway inflammation and may cause irreversible lung damage. Early identification of such exacerbations may facilitate early initiation of treatment, thereby potentially reducing long-term morbidity. Research question: Is it possible to predict pulmonary exacerbations in children with cystic fibrosis, using inflammatory markers obtained from BAL fluid?

Research

Assessment of early lung disease in young children with CF: A comparison between pressure-controlled and free-breathing chest computed tomography

Our data suggest that FRC PC-CTs are less sensitive than TLC PC-CTs and that FB-CTs have similar sensitivity to PC-CTs in detecting lung disease

Research

Infective respiratory syncytial virus is present in human cord blood samples and most prevalent during winter months

Human respiratory syncytial virus (RSV) remains the most common cause of severe lower respiratory tract disease amongst infants, and continues to cause annual epidemics of respiratory disease every winter worldwide.

Research

Early lung surveillance of cystic fibrosis: what have we learnt?

Newborn screening (NBS) for cystic fibrosis (CF) provides an opportunity to commence management and therapeutic interventions significantly earlier

Research

Innate epithelial and functional differences in airway epithelium of children with acute wheeze

Early childhood wheeze is a major risk factor for asthma. However, not all children who wheeze will develop the disease. The airway epithelium has been shown to be involved in asthma pathogenesis. Despite this, the airway epithelium of children with acute wheeze remains poorly characterized.

Research

What goes up must come down: dynamics of type 1 interferon signaling across the lifespan

Type 1 interferons (T1IFNs) are typically expressed in low concentrations under homeostatic conditions, but upon pathogenic insult or perturbation of the pathway, these critical immune signaling molecules can become either protectors from or drivers of pathology. While essential for initiating antiviral defense and modulating inflammation, dysregulation of T1IFN signaling can contribute to immunopathology, making it and its associated pathways prime targets for immune evasion and disruption by pathogens. 

Research

Rhinoviruses A and C elicit long-lasting antibody responses with limited cross-neutralization

Rhinoviruses (RVs) can cause severe wheezing illnesses in young children and patients with asthma. Vaccine development has been hampered by the multitude of RV types with little information about cross-neutralization. We previously showed that neutralizing antibody (nAb) responses to RV-C are detected twofold to threefold more often than those to RV-A throughout childhood. Based on those findings, we hypothesized that RV-C infections are more likely to induce either cross-neutralizing or longer-lasting antibody responses compared with RV-A infections.