Skip to content
The Kids Research Institute Australia logo
Donate

Search

Research

The respiratory health effects of acute in vivo diesel and biodiesel exhaust in a mouse model

Biodiesel, a renewable diesel fuel that can be created from almost any natural fat or oil, is promoted as a greener and healthier alternative to commercial mineral diesel without the supporting experimental data to back these claims. The aim of this research was to assess the health effects of acute exposure to two types of biodiesel exhaust, or mineral diesel exhaust or air as a control in mice.

Research

Antenatal creatine supplementation reduces persistent fetal lung inflammation and oxidative stress in an ovine model of chorioamnionitis

Chorioamnionitis is a common antecedent of preterm birth and induces inflammation and oxidative stress in the fetal lungs. Reducing inflammation and oxidative stress in the fetal lungs may improve respiratory outcomes in preterm infants. Creatine is an organic acid with known anti-inflammatory and antioxidant properties.

Research

Current and novel therapies for management of Acinetobacter baumannii-associated pneumonia

Acinetobacter baumannii is a common pathogen associated with hospital-acquired pneumonia showing increased resistance to carbapenem and colistin antibiotics nowadays. Infections with A. baumannii cause high patient fatalities due to their capability to evade current antimicrobial therapies, emphasizing the urgency of developing viable therapeutics to treat A. baumannii-associated pneumonia.

Research

Ancestral SARS-CoV-2, but not Omicron, replicates less efficiently in primary pediatric nasal epithelial cells

Children typically experience more mild symptoms of Coronavirus Disease 2019 (COVID-19) when compared to adults. There is a strong body of evidence that children are also less susceptible to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection with the ancestral viral isolate.

Research

Airway and parenchyma transcriptomics in a house dust mite model of experimental asthma

Lung transcriptomics studies in asthma have provided valuable information in the whole lung context, however, deciphering the individual contributions of the airway and parenchyma in disease pathogenesis may expedite the development of novel targeted treatment strategies. In this study, we performed transcriptomics on the airway and parenchyma using a house dust mite (HDM)-induced model of experimental asthma that replicates key features of the human disease.

Research

Exacerbation of chronic cigarette-smoke induced lung disease by rhinovirus in mice

A significant proportion of chronic obstructive pulmonary disease exacerbations are strongly associated with rhinovirus infection (HRV). In this study, we combined long-term cigarette smoke exposure with HRV infection in a mouse model.

Research

Development and validation of a miniaturized bacteriophage host range screening assay against antibiotic resistant Pseudomonas aeruginosa

Antimicrobial resistance is a current global health crisis, and the increasing emergence of multidrug resistant infections has led to the resurgent interest in bacteriophages as an alternative treatment.

Research

ACE2 expression is elevated in airway epithelial cells from older and male healthy individuals but reduced in asthma

COVID-19 is complicated by acute lung injury, and death in some individuals. It is caused by SARS-CoV-2 that requires the ACE2 receptor and serine proteases to enter AEC. We determined what factors are associated with ACE2 expression particularly in patients with asthma and COPD. We obtained lower AEC from 145 people from two independent cohorts, aged 2-89 years, Newcastle (n = 115) and Perth (n = 30), Australia. The Newcastle cohort was enriched with people with asthma (n = 37) and COPD (n = 38). Gene expression for ACE2 and other genes potentially associated with SARS-CoV-2 cell entry was assessed by qPCR, and protein expression was confirmed with immunohistochemistry on endobronchial biopsies and cultured AEC.

Research

The development of a consensus statement for the prescription of powered wheelchair standing devices in Duchenne muscular dystrophy

PURPOSE: To develop a consensus statement for the prescription of a Powered Wheelchair Standing Device (PWSD) in young people with Duchenne muscular dystrophy (DMD). MATERIALS AND METHODS: An international multidisciplinary panel comprising clinicians and users (young people with DMD) along with their parents was consulted. A literature review was undertaken and a Delphi method was utilised to generate consensus statements.

Research

Assessing the unified airway hypothesis in children via transcriptional profiling of the airway epithelium

Upper and lower airways are conserved in their transcriptional composition, and variations associated with disease are present in both nasal and tracheal epithelium