Search
Human movement drives spatial transmission patterns of infectious diseases. Population-level mobility patterns are often quantified using aggregated data sets, such as census migration surveys or mobile phone data. These data are often unable to quantify individual-level travel patterns and lack the information needed to discern how mobility varies by demographic groups. Individual-level datasets can capture additional, more precise, aspects of mobility that may impact disease risk or transmission patterns and determine how mobility differs across cohorts; however, these data are rare, particularly in locations such as sub-Saharan Africa.
The intensity of transmission of Aedes-borne viruses is heterogeneous, and multiple factors can contribute to variation at small spatial scales. Illuminating drivers of heterogeneity in prevalence over time and space would provide information for public health authorities. The objective of this study is to detect the spatiotemporal clusters and determine the risk factors of three major Aedes-borne diseases, Chikungunya virus, Dengue virus, and Zika virus clusters in Mexico.
Childhood obesity and physical inactivity are two of the most significant modifiable risk factors for the prevention of non-communicable diseases. Yet, a third of children in Wales and Australia are overweight or obese, and only 20% of UK and Australian children are sufficiently active.
Undernutrition is a major risk factor for tuberculosis (TB), which is estimated to be responsible for 1.9 million TB cases per year globally. The effectiveness of micronutrient supplementation on TB treatment outcomes and its prognostic markers (sputum conversion, serum zinc, retinol and haemoglobin levels) has been poorly understood.
The economic and social development of nations relies on their population having physical access to services and employment opportunities. For the vast majority of the 3.4 billion people living in rural areas, this largely depends on their access to urban centers of different sizes.
Globally, there have been calls for an integrated zoonotic disease surveillance system. This study aimed to assess human and animal health surveillance systems to identify opportunities for One Health surveillance platform in Tanzania.
The spatial and temporal variability inherent in malaria transmission within countries implies that targeted interventions for malaria control in high-burden settings and subnational elimination are a practical necessity. Identifying the spatio-temporal incidence, risk, and trends at different administrative geographies within malaria-endemic countries and monitoring them in near real-time as change occurs is crucial for developing and introducing cost-effective, subnational control and elimination intervention strategies.
Textbook data is essential for teaching statistics and data science methods because it is clean, allowing the instructor to focus on methodology. Ideally textbook datasets are refreshed regularly, especially when they are subsets taken from an ongoing data collection.
Data on Rift Valley fever virus (RVFV) prevalence in urban settings and pastoral areas of Tanzania are scarce. We performed a cross-sectional study of RVFV seroprevalence and determinants in humans and animals from Ilala, Rufiji, and Sengerema districts of Tanzania.
Malaria imposes a significant global health burden and remains a major cause of child mortality in sub-Saharan Africa. In many countries, malaria transmission varies seasonally. The use of seasonally-deployed interventions is expanding, and the effectiveness of these control measures hinges on quantitative and geographically-specific characterisations of malaria seasonality.